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Abstract—The paper deals with state estimation of nonlin-
ear non-Gaussian systems with a special focus on the Gaussian
sum filters. To achieve a higher estimate quality, state and
measurement predictive moments appearing in the filters are
computed by the randomized unscented transform, which
provides asymptotically exact estimates of the moments. The
use of the Gaussian sum filter employing the randomized
unscented transform is introduced and the proposed algo-
rithm is illustrated in a numerical example. The analysis
of the numerical example involves a comparison of several
filters using a number of performance metrics both absolute
and relative, assessing the point estimate quality, the estimate
error quality, and the density estimate quality.

Keywords: state estimation, nonlinear filtering, non-
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I. INTRODUCTION

State estimation of nonlinear non-Gaussian discrete-
time stochastic dynamic systems is of utter importance
in many areas such as target tracking [1], [2], navigation,
signal processing, fault detection, and adaptive and optimal
control problems.

The Bayesian framework is a suitable tool for the state
estimation problem as it enables a non-Gaussianity analysis
with respect to the description of random quantities. A gen-
eral solution to recursive state estimation problems within
the Bayesian framework, is given by the Bayesian recursive
relations (BRR’s). They produce probability density func-
tions (pdf’s) of the state conditioned by the measurements.
The pdf’s represent a full stochastic description of the state,
which itself is unmeasurable.

The closed-form solution to the BRR’s is available
only for a few special cases, e.g., for a linear Gaussian
system [3], where the BRR’s solution corresponds to the
Kalman filter. When the measurement model or the state
transition model is nonlinear, an approximate method must
be applied. These approximate methods can be divided into
two groups with respect to the validity of the resulting
estimates [4]. The first group of methods provides results
with validity within a neighborhood of the point estimate
only and thus they are called local methods. The second
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group of methods provides results valid within almost the
whole state space and are called global methods.

The local methods provide approximate conditional
mean and associated covariance matrix of the estimate
error. Popular approximations to nonlinear functions used
by the methods are (i) the Taylor series expansion of the
nonlinear functions in the system description leading to the
extended Kalman filter (EKF) or the second-order extended
Kalman filter [5], (ii) the polynomial linearization of the
nonlinear function by a first or second order polynomial
interpolation [6], [7] leading to the divided difference filters
(DDF’s), (iii) the stochastic linearization [8] approximating
a random variable by a set of points, which are transformed
through nonlinear functions and leading to the unscented
Kalman filter (UKF) [9]-[11], and (iv) calculating approx-
imate moments of a random variable by means of the
Gauss-Hermite quadrature [6] or cubature integration rules
and leading to quadrature or cubature filters [12]. In [13]
a randomized unscented Kalman filter has been proposed
(RUKF) based on a degree 3 stochastic integration rule
(SIR3), which is combination of the cubature rule and the
Monte Carlo (MC) method.

Due to the approximation of the state estimate condi-
tional pdf by the first two moments only, the local methods
are not very practical for non-Gaussian problems. Here,
the global estimation methods, providing an approximation
of the full conditional pdf, achieve a good quality perfor-
mance. However, note that the improved performance is
usually paid by higher computational costs. There are three
main approaches to the global filtering method design: (i)
the analytical approach based on Gaussian sum approxima-
tion of pdf’s [14], [15] and using approximation techniques
of the local methods, (ii) the numerical approach using
point-mass approximation of the conditional state pdf’s and
solving the integrals in the BRR’s numerically [16], [17],
and (iii) the simulation approach taking advantage of the
BRR’s solution by the MC methods and approximating the
conditional state pdf by an empirical representation [18],
[19].

The analytical global methods are based on a multiple
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application of local methods, e.g. the Gaussian Sum Filter
(GSF) consists of a bank of EKF’s, or the Sigma Point
Gaussian Sum Filter [20] using a bank of DDF’s or UKF’s.
In problems involving multiple mode pdf’s, the analytical
global methods provide a high estimate quality as they are
able to follow the modes with individual local methods.

The goal of the paper is to propose a filter based on
Gaussian sum representation of pdf’s and utilizing the
randomized unscented transform (RUT) which has been
used in [13] as a basis for designing the RUKF. The RUT
will be used to compute statistics of a transformed random
variable. Comparing to the unscented transform (UT),
appearing in the UKF, the RUT offers asymptotically exact
estimates of the statistics. The RUT gives a flexible and
computationally efficient method for computing posterior
moments when measurement and/or kinematic models are
nonlinear.

The paper is organized as follows: System specification
and nonlinear non-Gaussian state estimation by means of a
generic Gaussian-sum based global filter are introduced in
Section II. The RUT is discussed in Section III. Section IV
deals with the algorithm of the proposed filter with a
special focus on implementation details. In Section V, the
proposed filter will be applied to a numerical example for
performance evaluation and comparison, and concluding
remarks are drawn in Section VI.

II. SYSTEM SPECIFICATION AND GENERIC
GAUSSIAN-SUM BASED GLOBAL FILTER
Let the discrete-time nonlinear stochastic system be
considered in the following form
Xp+1 =B (xXg) + Wi, k=0,1,2,...,
Zy =he(xx) + v, k=0,1,2,...,

(1)
2

where the vectors x; € R"™ and z; € R": represent the
unmeasurable state of the system and measurement at time
instant k, respectively, fi : R — R"™ and h; : R —
R"z are known vector functions, and w; € R"r, v, € R™
are the state and measurement white noises, which are
supposed to be mutually independent. The pdf’s of the
noises p(wy) and p(vx) are assumed to be known. The
initial state x( is independent of the noises and its pdf is
supposed to be known.

The general solution to the estimation problem (i.e.

finding x; based on knowledge of z* 2 2o, 21, ..., 2Zk])
is given by the BRR’s computing pdf’s of the state condi-
tioned by the measurements [3]. These pdf’s provide a full
description of the estimated state. The BRR’s are assumed
in the following form

p(xeZF =) p(zi xk)
p(z|zF=1)

(e 125 = / Pt %) p (ke 125

p(xilzh) = , 3)
4)

where p(xx|z¥) is the filtering pdf, p(xx41]z¥) is the one-
step ahead predictive pdf, p(Xg+1|Xx) and p(zg|xy) are the

state transition pdf obtained from (1) and the measurement
pdf obtained from (2), respectively, and p(z|ZF1) =
Ik p(x¢|2Z81) p(zx |Xx)dxg. The closed form solution to the
BRR’s is available only for a few special cases [3]. In
other cases it is necessary to apply an approximation in
the BRR’s solution.

The Gaussian sum-based global filter requires specifi-
cation of the noises and initial state pdf’s in the form of
Gaussian sums as follows:

No
pxo) =D af) Nxo: %), P},

5)
aw

pwe) =D BN twes W, Q). ©)
i=1

pvi) =D 7 Nive 9 R (7

i=1
where N {y; ¥, P} denotes Gaussian distribution of a ran-
dom variable y parametrized by its mean y and covariance
matrix Py,. The parameters ao , /)’(l), and y, @ are positive
weights of particular Gaussian terms with their sum being
equal to 1. All the parameters (i.e. the weights, means and
covariance matrices) are assumed to be known.

If any of the noises or the initial state has a distribution
different from Gaussian sum distribution, its Gaussian sum
approximation has to be found (e.g. using the expectation-
maximization (EM) method [21]). It has been proved that
the approximation by a Gaussian sum can be arbitrarily
accurate [3]. Considering the noises given by the Gaussian
sum pdf (5-7), the following algorithm of a global filter
provides a generic solution to the estimation problem.

Algorithm 1: Generic Gaussian Sum Global Filter

= 0 and
p(Xp) as a

Step 1: (initialization) Set the time instant k
define a priori initial condition p(xplz™') =
sum of Ng—1 = No Gaussian terms.

Step 2: (filtering) The filtering pdf is approximated by

Nk

p(xlzh) ~ Za,ﬁ N {xe: K0, PO, )

where Nyjx = Nijk—1 - 7. The filtering mean Xk\k and the

covariance matrix P,(d;{ of the i-th term N {x; ﬁ,(cllzc,Pl(C’&}

are computed using

’A‘I(clli = ’A‘I(cjuz |+ Kl(cl&c(zk zk|k s 9
(@) )] @) p) @\T
Pkllk _ij\k 1 KkllkPlklk I(Kkllk) ) (10)
‘ -1
@) @) @)
where Kkllk = lez klk—1 (leklk 1) and
A !
Zl(c'&c 1= Ekjlk 1 [h(xp)] +V() (11
I
P??qk 1 =C°V1(<]|12—1[h(xk)] R;({), (12)
(@) J NG)) A (i)
lez klk—1 = k|k—1[(xk Xk]\k 1) (e (xi) — Zpk— 1) 1,
(13)
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where E,(le 12—1['] is a shorthand notation for

= [N R P o

o) ()
‘N{Xk’xkj\k—l ’ij\k—l
and Cov(j) {[-] for cov ) o L]
K|k~ NG X1 Peje—1}

The likelihood {k(i) of the ith term with respect to the
known measurement z; is given by

O~ Nz ) PO ) (14)

The indices j and [ are given by

. i—1 .
J=i—1l———INep-1, Jj=1,..., Neg—1, (15)
Nijk—1

i—1

I=1+|
Nijk—1

1, I=1,...,rk (16)
and i = 1,..., Ngk. The symbol |x] denotes the floor
function, i.e. the largest integer less than or equal to x.

The filtering weight a 15'& of each term is given by
G 0.0
Alk—17k G

Nifk—1 ~—7, () @) - (Ni—1G—D+D)
2= 11 A1k Gk

() _
Ok =

a7

Step 3: (global point estimate) The global filtering mean
and covariance matrix can be obtained by the following
relations

Nk

R = Elxil2] = D ahx{. (18)
i=1

k
Py = cov[xg|z"]
Nk

= >l [Pl + G =% Gen =% ] (19)
i=1

Similarly, other point estimates (e.g. a mode or median)
can be obtained from the global state estimate (8).

Step 4: (reduction) Generally, the state or measurement
noise with the Gaussian sum distribution causes an expo-
nential growth of the number of Gaussian terms in the sum
(8), which must be reduced to keep computational costs
reasonable [22], [23].

Step 5: (prediction) The predictive pdf is approximated by

Ni+11k

P2~ D ol N e K PO (20)

i=1

. () ol
where Niyix = Nij - g and alil-i)-l\k = ak{lzﬂlg) The
particular predictive mean &/(Cllllk and covariance matrix

P,(Q_ | are computed by

() ~ ()

Xerie = Ei(cfz_l[fk(xk)] + w7, (21)
PO = covi) f(x0)] + QY. (22)

Again, the indices j and [ are given by

N A | .
J=i—L——1Nkk, Jj=1,..., N, (23)
Nk

i—1
1, I=1,...
Nk

=1+ . Gk 24

andi =1,..., Ny
Let k = k + 1, Then go to Step 2.

III. RANDOMIZED UNSCENTED TRANSFORM

The RUKEF proposed in [13] employs the RUT as a mean
to calculate approximate predictive statistics (state means
and covariance matrices) of the state and measurement. The
RUT is a special case of SIR3 proposed in [24], [25]. The
SIR3 aims at evaluating an integral of the form

" =/ 9(x)(2) " 2[p| 12 2O P R gy
Rnx
(25)

where @(-) is an arbitrary function. Note that relation (25)
can be interpreted as computation of the expected value
of the function @(x) where x is a random variable with
p(x) = N{x; X, P}, ie.

k= EyxzpleX] (26)

The SIR3 proposed in [24] for a solution to (25) is given
by the following algorithm:

Algorithm 2: Degree 3 stochastic integration rule

Step 1: Choose an error tolerance ¢ and a maximum
number of iterations N,,qx.

Step 2: Initialize the number of iterations N = 0, initial
value of the integral i = 0, xi, and initial square-error
of the integral estimate V = 0, _»,, and calculate a square
root /P, of P, such that P, = /P, \/ITXT. Note that 0, xp
denotes a @ x b matrix of zeros.

Step 3: Repeat (until N = N4y or ||V
following loop:

a) Set N=N +1.

b) Generate a uniformly random orthogonal matrix
U of dimension n, x n, and generate a random
number p from chi-squared distribution p ~
Chi(ny + 2).

c) Compute a set of points x; and appropriate
weights w; according to

< ¢) the

X

2

—_
=

XO = ﬁ)
Xizﬁ_pU(\/Px)is wllzzp%9
Yn,+i =X+ pUWPYi,  on+i = o,

where i = 1,2,...,n, and the term (JPy),
represents the i-th column of the matrix /P, .

Wy =

S
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Figure 1. Comparison of points and weights generated by the CR
and SIR3 for R? state space: left - comparison of the weights, right -
comparison of the points placement (dots - SIR3, stars - CR).

d) Compute the value S of the integral at current
iteration

2n,y
S=> wielx)
s

and use it to update the approximate value . of the
integral and square-error of the integral estimate
V as

D= -1)/N,
L=pR+D,
V=(N—-2)V/N+DD".

The SIR3 can be thought of as a blend of a cubature
rule (CR) and the MC method. The SIR3 consists of
the spherical integration rule, which generates a set of
2n, points located on an unit n,-sphere, and the radial
integration rule, which governs spread of the points within
the R"™x.

In Figure 1, a comparison of the points and weights
generated by the CR and the points and weights generated
by the SIR’s is shown. Contrary to the CR, the SIR3
provides asymptotically exact estimates of integral [24],
ie. E[l] = p.

Note that the points generated by the CR are identical
with the points generated by the UT with scaling parameter
k = 0. In [13], it was shown that the location of points
generated by the SIR3 when choosing a trivial orthogonal
matrix U = I and the parameter p as p? = x + ny
matches the location of points generated by the UT which
uses the scaling parameter x. This fact lead to coining
the term randomized UT in [13] for the SIR3 used to
estimate moments of a random variable y € R" related
to a random variable x € R™ that is given by its mean
X and covariance matrix P, through a known nonlinear
function y = g(x) = [g1(X),--.,&n,(x)]7. The RUT
estimates the mean E[y] = E[g(x)] and the covariance
matrix cov[y] = E[(y — §)(y — §)7] of y, and the cross-
covariance matrix E[(x — X)(y — §)71.

IV. GAUSSIAN SUM GLOBAL FILTER WITH
RANDOMIZED UNSCENTED TRANSFORM

The RUT introduced in the previous section will be used
to calculate the predictive measurement moments (11-13)

and the predictive state moments (21-22) of the Gaussian
sum global filter described in Algorithm 1. Due to paper
size limitations, only measurement prediction moments
will be discussed in this section. Calculation of the state
prediction moments is analogous.

The simplest application of the RUT in computation
of the predictive measurement moments in Algorithm 1
would comprise a SIR3 algorithm iterative run for each
of Nijk—1 means E/(cﬁ_l[hk (Xx)], Nijk—1 covariance matri-
ces cov,(({,z_l
P)(c'z),k|k—1‘ Naturally, a large number of random parameters
p and random orthogonal matrices Q would have to be
drawn which would lead to a substantial increase in com-
putational costs. To increase the timeliness in the presence
of high computational costs, it is possible to compute all
the moments in parallel. This technique will be adopted in
the following algorithm.

Additionally, to reduce the costs even further,
the algorithm will compute second raw moments
Eg)_ (e (x)he(x0)T] and  EY) [xehi(x)T]  instead
of the covariance and cross-covariance matrices
cov,(cll,z_l[hk(xk)] and P;(clz),km—l’ respectively. As the last
step of the algorithm, the covariance and cross-covariance
matrices will be obtained by a ftrivial combination
of the means and second raw moments according to
cov(y) = E[yy"] — E[yI[E[y]]". This enables to run a
parallel computation of all terms involved in the Gaussian
sum (8).

For notational simplicity, the algorithm will consider a
fixed number of iterations. Utilization of the error tolerance
e will be discussed later. Also for the sake of clarity, the
time indices will be dropped in the algorithm. Note that jL
and S in Algorithm 2 corresponds to EG)[-] and ED-V[.],
respectively in Algorithm 3. .

[hy (xx)] and Njk—1 cross-covariance matrices

Algorithm  3: RUT for Gaussian _sum _ filter

Step 1: Choose the total number of iterations N, and
initialize the number of iterations as N = 0. Set the initial
values of the measurement statistics to be calculated:

o EOM®] = 0,51,
e EQMEh®)T] =0, 2.,
o EDXh®)T] = 0,, ..

Calculate a square root +/P() of the state predictive
covariance matrices P().
Step 2: Repeat until N = N,4q4;, the following loop:

a) Set N=N + 1.

b) Generate a uniformly random orthogonal matrix
U of dimension n, x n, and generate a random
number p according to p ~ Chi(ny + 2).

c) For each of the predictive terms N {x;i(j), PU)}

do the following
cl) Compute a set of points x; and appropriate

2007



weights w; according to

Ny

x =%, w=1-14,

p
1 =30 — pUWPDY, o = #
xfi,)ﬁ =% + pUWPD);, o 4i = w;,
where i =1,2,...,ny. '
¢2) Compute the values EU-N[h(x)],

EWD-Nh(x)h(x)T), and EUV:N[xh(x)T]
of the statistics at current iteration
2ny
EVNho] = D" wih(x”),
i=0
2ny ) )
EDN¥hh® ] = > oh(x)Hh(x)T,
i=0
2]’1)( . .
EDNxh)] = > o n@ )"
i=0
Step 3: Calculate values of the statistics as

Niotal
EV)] =+ > EDV ),
N=1
Niotal
EVm®h®) =+ > EDVhhx)],
N=1
Niotal
E(j)[xh(x)T] = % Z E(-/)’N[xh(x)T].

N=1

Step 4: Find the covariance and cross-covariance matrices

as

cov h(x)] = EVx)hx)"] — EVhx)EV )T,
EV[(x — D) (h(x) — EV[hx)])T] = EV[xh(x)]
—xDED )T

Instead of specification of a fixed total number of
iAterations, itAis possible to monitgr error of the means
EW[h(x)], EDh(x)h(x)T] and EV[xh(x)T] estimates,
compare the error with a pre-specified threshold, and iterate
until error of all statistic estimates are lower than the
threshold.

V. NUMERICAL ILLUSTRATION
Consider the following nonlinear non-Gaussian system
[18] with one-dimensional state
Xi+1 = ¢1xx + 1 + sin(wn k) + wy 27

with the state noise wy described by the Gamma pdf
Ga(3,2), Vk, ¢1 = 0.5, o = 0.04 are scalar parameters

and k = 1,...,60. The state is observed by the scalar
measurement described by the equation
2
, k < 30,
o= x4+ vk < (28)
$3xk — 2 + v, k > 30.

The measurement zi is influenced by the measurement
noise vy ~ N{vg; 0, 105 }, Vk, and the scalar parameters
are ¢ = 0.2 and ¢3 = 0.5. The initial condition is given
by a sum of five Gaussian pdf’s p(xp) = Z]S':l W_]f X
N{(xos 25", P} = 33_,0.2 x N{xo: j — 3,10} The
predictive pdf p(xolz~") is equal to p(xp).

For the purposes of the Gaussian sum global filters, we
calculated a three-term Gaussian sum approximation of
Ga(3,2) distribution by means of the expectation maxi-

mization algorithm as

P(wr) = 0.29 x N {wy; 2.14, 0.72}
+0.18 x N {wy; 7.45, 8.05)
+0.53 x N{wy; 4.31,2.29), Vk.

Performance of the following state estimation methods was
compared in the numerical example:

o global filters:

— Gaussian sum filter with the RUT (GSF-RUT),

— Gaussian sum filter with Taylor expansion of the
nonlinear equations [4] (GSF-TE),

— Gaussian sum filter with unscented transform [20]
(GSF-UT).

o local filters:

- EKF,

- UKF,

- RUKFE

Within all global filtering methods, the pruning step had
to be implemented to prevent exponential increase of the
number of terms in the filtering Gaussian sum pdf. More
specifically, at each time instant, the 20 highest-weighted
terms were kept while the other were discarded.

The GSF-RUT selected parameters were the maximum
number of iterations N,,,, = 500 and the error tolerance
& = 0.5. The efficient implementation of the RUT given by
Algorithm 3 was used. In this example, computational costs
of the efficient implementation amounts to approximately
7% of the computational costs of the simplest implemen-
tation described in the previous section.

The experiments were carried out using M = 1000 MC
simulations. Due to the global property of the estimates
produced by the GSF-RUT, five metrics were chosen for
comparison of the obtained results:

e Root Mean-Square Error (RMSE) defined as

M
RMSE; = % Z(J?kuc(i) — xx(i))?,

i=1

where x; (i) and X (i) denote true and estimated state
at the i-th MC run.

The RMSE metric provides an evaluation of the
estimate error expressed as the Euclidean distance
between the true state and its estimate. The value
of the RMSE provides an absolute evaluation of the
estimate error,
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o Log Mean-Square Error Ratio (log-MSER) given by

X ()

log-MSER; = Z < tr(Pek @)’

where Py (i) is the covariance matrix of the estimate
provided by the filter at the i-th MC run and Xy is
the mean-square error of the estimate. The log-MSER
is a scalar measure of the normalized non-credlblhty
matrix (NNCM), NNCM = Pklk/ ZkPk X % [26].
According to the values of the log- MSER (posi-
tive/negative) the estimator is said to be optimistic or

pessimistic.
o Non-Credibility Index (NCI) defined as [11], [27]
M
NCl =77 > [1010g1g ((xk (i) — £k 1)/ Pe ()

i=l
— 1010go (@) — 2k ())2/ %) ]

The NCI provides an evaluation of a relative esti-
mation error [28] and, moreover, it evaluates a self-
assessment provided by each filter in the form of the
covariance matrix of the estimate error.
Note that NCI is a scalar measure dependent on the
distribution of the estimation error, while the non-
credibility matrix is a matrix measure depending only
on the actual and calculated second moments of the
estimation error [26].

o Averaged Normalized Estimation Error Squared
(ANEES) [32] defined as

M
ANEES; = 17 3" (0 — %)@~ 0 — %)
i=1

The ANEES credibility measure has a nice property
of dimension normalization [27].
e Inaccuracy defined as

Kl )= f pi(xelz) log

—dx,
p2(Xk|Z5)

where p is the true filtering pdf and p; is the filtering
pdf obtained by the filters. The true pdf was computed
in the form of an empirical pdf using a particle filter
[29] with 10° samples. The global filters produced
the approximate filtering pdf in the Gaussian sum
form (8). For the local filters, which produce only the
filtering mean and covariance matrix, the filtering pdf
was assumed to be Gaussian.
Considering the true pdf p; in the empirical pdf
form, the inaccuracy [30] is a suitable measure of
discrepancy between the pdf’s p; and p;. It equals
to the Kullback-Leibler distance between p; and p3
increased by the Shannon differential entropy of pj
[31].

The RMSE values are given in Figure 2, the log-MSER

values in Figure 3, the NCI values in Figure 4, the ANEES

values in Figure 5, and the inaccuracy in Figure 6. Note

35 - © = EKF
- & = UKF
= = = RUKF
3 ——GSF-TE |
—— GSF-UT
GSF-RUT|

ol
3
8
&
w

- @ - EKF

- @ = UKF

= = = RUKF
—— GSF-TE
—a— GSF-UT [{
GSF-RUT|

Figure 3. Time development of the log-MSER.

that the inaccuracy values for the EKF and UKF were by
several orders higher than the values for the other filters
and, therefore, for clarity purposes they are omitted in the
figure. The inaccuracy values for the RUKF ans GSF-RUT
were very close; hence they are depicted on a separate
figure (Figure 7). Note that the abrupt changes at k = 30 are
caused by the fact that at this time instant the measurement
function becomes linear (see (28)). As was expected,
the RMSE results show that the GSF-RUT achieves the
smallest error of the global filters and also that global
estimators perform better than the local ones. In terms of
the log-MSER and the NCI, the GSF-RUT provides the
best results among the global filters. However, the lowest
values of log-MSER and NCI were achieved by the RUKF,
which is very surprising as it is a local filter. The inaccuracy
then again confirmed the expectations that global estimates
are closer to the true filtering pdf than the local estimates
represented by a Gaussian distribution. Among the global
estimates the results with the lowest inaccuracy belong to
the GSF-RUT.

In summary, the GSF-RUT achieved the best results in
terms of the density estimates. However, this fact does not
necessarily imply that the moments calculated from the best
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| EKF UKF RUKF GSF-TE GSF-UT GSF-RUT

Time 0.4 0.5 3.1 5.2 719 7.1

[msec]

Table I
COMPUTATIONAL COSTS OF A TIME STEP [MSEC]

filtering pdf estimate are also the best, as was illustrated
by this example. Although the mean estimate achieved
by the GSF-RUT was, according to the RMSE, the best,
the RUKF accomplished estimate error variance closer to
the true one than the GSF-RUT (measuring by the log-
MSER). This could also lead to the claim that the RUKF
is a more credible estimator than the GSF-RUT despite the
fact that the GSF-RUT gives better density estimates. The
reason for this situation may be the fact that the Gaussian
sum based density estimate produced by the GSF-RUT is
only an approximation of the true one. For the sake of
completeness, the computational costs of a time step of
each algorithm are given in Table L.

VI. CONCLUSION

The paper dealt with state estimation of nonlinear non-
Gaussian systems by Gaussian sum filters. To achieve
higher quality estimates, a Gaussian sum filter was pro-
posed where the predictive state and measurement moments
were computed by the randomized unscented transform
(RUT). The RUT, which can be seen as a randomized
version of the unscented transform, provides asymptotically
exact estimates of the moments. To keep computational
costs of the new filter low, an algorithm involving parallel
calculation of the moments has been proposed which is
termed the Gaussian Sum Filter with Randomized Un-
scented Transform (GSE-RUT). The GSE-RUT filter was
illustrated in a numerical example and can compared to
the local filters: extended Kalman Filter (EKF), Unscented
KF (UKF), and randomized UKF (RUKF) as well the
global filters of the Gaussian Sum Filter using the Taylor’s
expansion (GSF-TE) and unscented transform (GSF-UT).
Comparative result were analyzed in detail using several
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performance measures evaluating accuracy of both point
estimates and density estimates. Three conclusions from the
comparative study were (1) in all cases, the RUT improved
the results over the UT, (2) the RUKEF local filter resulted
in a better log mean square error and credibility index,
and (3) the global GSF-RUT filter had the lowest absolute
inaccuracy.
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